Hi, Josh. There are two different answers to what makes it useful, and a third to what makes it interesting.
-
Pretty much any programming language can be viewed as procedure calling with a lot of syntax wrapped around it, and understanding how lambdas and procedure calls are evaluated in the abstract helps organize practical interpreters or compilers. See for example this course on programming languages at Berkeley.
-
Although you wouldn't want to use a really minimal language for actual work, such languages are easy to prove theorems about. (This is also true about Turing machines.) In particular, we can prove that procedure calling is universal -- you don't need any other features to perform any computation that can be done at all; we can prove that there are uncomputable functions; we can gain insights into naming and scope. And so on. You can get @hardmath123 to teach you about how the development of "typed lambda calculus" gave programming language scholars insight into the difficulties of getting typed variables to work adequately in real languages.
-
It's historically interesting that lambda calculus predates Turing's work -- lambda was the first provably universal computer. As such it's an important moment in math history, the first solution to one of Hilbert's problems. (And it's interesting to think about why Turing's more sequential model became more popular!)
There are named functions; it's just that you have to be clever about the naming, because lambda-binding (associating actual arguments with formal parameters) is the only naming mechanism. Hence the importance of the Y combinator, which makes recursion possible.
The thing about all functions being single-argument is just a simplification to make proofs easier. Practical languages based on lambda (e.g., Snap!) allow multi-arg functions as a little piece of syntactic sugar.
In our community, hardly anyone has actually studied lambda calculus formally. Rather, the lambda in the logo and in a bunch of people's icons is there to emphasize the importance of procedures in our programming style. This includes ordinary named procedures, but naturally extends to anonymous ones, particularly in the context of higher order functions such as MAP. And from there we get to understanding object oriented programming as just another vocabulary for closures -- the result of invoking a procedure and thereby giving values to all its variables.
The best way to understand all this is to read SICP, the best computer science book ever written. It's a dense text, not something you'll finish over a weekend, but it's really what marks the difference between muggles and wizards in CS.